Задачи принятия решений в условиях определенности


К этому классу относятся задачи, для решения которых имеется достаточная и достоверная количественная информация. В этом случае с успехом применяются методы математического программирования, суть которых состоит в нахождении оптимальных решений на базе математической модели реального объекта.

Основные условия применимости методов математического программирования следующие:

1. Задача должна быть хорошо формализована, т. е. имеется адекватная математическая модель реального объекта.

2. Существует некоторая единственная целевая функция (критерий оптимизации), позволяющая судить о качестве рассматриваемых альтернативных вариантов.

3. Имеется возможность количественной оценки значений целевой функции.

4. Задача имеет определенные степени свободы (ресурсы оптимизации), т. е. некоторые параметры функционирования системы, которые можно произвольно изменять в некоторых пределах в целях улучшения значений целевой функции.

 



Содержание раздела